Premios Nobel – Física 1909 (Guglielmo Marconi y Karl Ferdinand Braun)

Premios Nobel – Física 1909 (Guglielmo Marconi y Karl Ferdinand Braun)

Pasito a pasito, en la serie sobre los Premios Nobel vamos recorriendo la historia de estos galardones, en la Física y la Química, desde sus origenes hasta la actualidad. De este modo le damos un repaso a muchos asuntos interesantes en Ciencia, pero de un modo poco habitual: desde una perspectiva histórica, tratando de recrear la maravilla de descubrir los secretos de la Naturaleza poco a poco. Llevamos ya un buen puñado de premios, desde los inicios en 1901 hasta el último, el de Química de 1908 con el que nos divertimos juntos –o eso espero– en la última entrega de la serie. La verdad es que es una de las series que más disfruto escribiendo, porque me encanta leer los textos de la época, por anticuados que suenen hoy, y vislumbrar las emociones que cosas que hoy damos por sentadas despertaban entonces. Para muestra, un botón del discurso de presentación del premio de hoy:

En 1897 era aún posible únicamente realizar una transmisión inalámbrica hasta una distancia de 14-20 km. Hoy en día, las ondas electromagnéticas se envían entre el Viejo y el Nuevo Mundo, todos los barcos de vapor transoceánicos de gran tamaño tienen su propio equipo telegráfico sin hilos a bordo, y toda Armada de importancia utiliza la telegrafía sin hilos.

¡Qué modernidad! ¡Todos los barcos de gran tamaño tienen su propio equipo telegráfico sin hilos! Las ciencias adelantan que es una barbaridad…
En fin, que me pierdo. El Premio de hoy es el Nobel de Física de 1909, otorgado al italiano Guglielmo Marconi y al alemán Karl Ferdinand Braun, en palabras de la Real Academia Sueca de las Ciencias,

En reconocimiento a sus contribuciones al desarrollo de la telegrafía sin hilos.

Hoy en día, claro está, no hablaríamos de telegrafía sin hilos sino de radio, pero ese término no empezó a utilizarse de manera extendida hasta 1920 o así y, al principio, realmente se trataba de algo tan simple como la telegrafía, no la transmisión de voz posterior.
En cualquier caso, el premio de hoy es peculiar. Desde luego, no pretendo conocer los pensamientos de los miembros de la Real Academia por entonces, pero por importantes que sean los avances logrados por Braun, Marconi y otros que no fueron recompensados con un Nobel, se trata de avances prácticos basados en un descubrimiento fundamental, el descubrimiento, que es el que debería haber recibido el Nobel.
Braun y Marconi
Karl Ferdinand Braun (izquierda) y Guglielmo Marconi (derecha).

El problema es que los físicos que establecieron las bases teóricas y experimentales para el nacimiento de la “telegrafía sin hilos” y con ella de las comunicaciones inalámbricas en general estaban ya muertos antes de que se otorgase el primer Premio Nobel en 1901. Esto significa que, por revolucionarios que fueran aquellos descubrimientos, sus autores nunca podrían ser galardonados por ellos… con lo que sospecho, aunque se trate de una opinión personal, que la Academia trató de reconocer a Maxwell, Faraday o Hertz a través de Braun y Marconi y la realización práctica de las ideas y experimentos de aquellos genios.
De modo que tengo que pedirte, como muchas otras veces, comprensión: no voy a hablar mucho ni de Braun ni de Marconi, –aunque desde luego que describiremos brevemente sus contribuciones a este asunto–. No, esta serie es para disfrutar, no para recorrer mecánicamente los premios, y lo que es realmente para disfrutar, científicamente hablando, es lo que pasó antes de Marconi, Tesla o Braun, de modo que a eso nos dedicaremos fundamentalmente. Es posible que algún día dediquemos una entrega de inventos ingeniosos a la radio y será allí donde abordemos los asuntos más controvertidos y escabrosos del desarrollo de ese invento, pero hoy nos recrearemos en la ciencia pura relacionada con el nacimiento de la radio.
Debemos retroceder, por lo tanto, a mediados del XIX, cuando la electricidad y el magnetismo estaban aún en pañales. Ya hablamos brevemente de este asunto en el artículo dedicado al telégrafo eléctrico, pero en 1820 el danés Hans Christian Ørsted comprueba que una corriente eléctrica es capaz de mover una aguja imantada. La importancia fundamental de este experimento, sin duda, es el descubrimiento de la conexión existente entre electricidad y magnetismo, dos fenómenos que hasta entonces se habían considerado completamente separados, pero hay una segunda lectura más relevante en lo que al artículo de hoy se refiere: la aguja imantada no tocaba el cable por el que circulaba corriente, y sin embargo era afectada por él. Dicho con otras palabras, la corriente eléctrica ejercía un efecto sobre un objeto distante a través del espacio que los separaba. La electricidad afectaba al espacio circundante, aunque no se supiera aún cómo ni por qué.
James Clerk Maxwell
James Clerk Maxwell (1831-1879).
Otros científicos, como Faraday y Henry, realizan avances experimentales considerables en el estudio de la electricidad y el magnetismo, demostrando y utilizando las conexiones entre ambos, pero hace falta un marco teórico que abarque ambos campos con coherencia y solidez: una auténtica teoría electromagnética. Si llevas gorra o sombrero, por favor, tengo que pedirte que te lo quites como muestra de respeto antes de seguir leyendo, ya que el responsable de crearla es un genio como ha habido pocos en la historia de la ciencia: el escocés James Clerk Maxwell. Como vimos en el artículo dedicado a Lorentz y Zeeman, Maxwell toma el conocimiento teórico anterior, los experimentos de Faraday y compañía, y elabora una teoría del electromagnetismo que explica con una elegancia pasmosa las observaciones anteriores relacionadas con la electricidad y el magnetismo. Sus cuatro ecuaciones –que eran más de cuatro y más complejas hasta que Oliver Heaviside las convirtiese en las que usamos hoy, aunque sigan llevando el nombre de Maxwell– son, sin duda, algunas de las más bellas de la Física, pero en lo que a nosotros respecta en este artículo, tienen una importancia adicional.
El caso es que, entre las diversas predicciones que Maxwell pudo obtener de sus ecuaciones, una de ellas era realmente intrigante: cualquier perturbación eléctrica o magnética no se transmitía instantáneamente por el espacio, sino que tardaba cierto tiempo en alcanzar puntos distantes. El escocés, por tanto, calculó a qué velocidad se transmitían esas perturbaciones y obtuvo un valor casi idéntico al de la velocidad de la luz –dentro de la precisión de la época, por supuesto–. Pero la cosa fue más lejos; la maravilla de las ecuaciones de Maxwell es que, aunque su propósito fuera describir fenómenos ya conocidos, de ellas se deducían conclusiones sorprendentes sobre la electricidad y el magnetismo, fenómenos nuevos y nunca identificados.
Ecuaciones de Maxwell
Ay, que se me saltan las lágrimas… las ecuaciones de Maxwell, a las que un día dedicaremos una mini-serie.
El más sorprendente de todos, y evidente al manipular las ecuaciones, era el hecho de que el campo magnético y el eléctrico, al variar en el tiempo y el espacio, debían ser capaces de producir ondas que se propagasen por el espacio: ondas electromagnéticas, en las que la oscilación era la propia variación del campo eléctrico y el magnético; en términos de la época, ondas eléctricas. Y la velocidad de propagación de esas ondas por el espacio era, curiosamente, la de la luz. Claro, las coincidencias pueden suceder, pero a Maxwell le pareció extremadamente sospechosa la combinación de dos factores: por un lado, la coincidencia casi exacta de la velocidad de la luz con la de sus “ondas eléctricas”, y por otro lado el hecho de que, siendo tan evidente la existencia de esas ondas a partir de sus ecuaciones, nadie nunca las hubiera visto. En palabras del propio Maxwell,

Esta coincidencia de resultados parece mostrar que la luz y el magnetismo son efectos de la misma sustancia, y que la luz es una perturbación electromagnética que se propaga a través del campo de acuerdo con las leyes del electromagnetismo.

Esa sustancia de la que habla Maxwell no era otra que el famoso éter luminífero, que traería de cabeza a los físicos durante unas cuantas décadas, pero no es eso lo que nos interesa ahora mismo. La teoría de Maxwell no sólo combinó electricidad, magnetismo y luz, sino que además –y de ahí su importancia en esta entrada– predecía la posibilidad de crear señales ondulatorias utilizando la electricidad que viajasen por el espacio y pudiesen ser detectadas en otros lugares. Desde luego, Maxwell era un teórico puro y no realizó experimentos al respecto, pero sin su base teórica no hubieran sido posibles los avances posteriores. En mi opinión, el primero de los dos genios del artículo de hoy es, sin duda, el escocés, que no recibió el Nobel porque murió bastante tiempo antes de que existieran esos premios.
Pero, como casi siempre pasa en Ciencia, las respuestas de Maxwell generaban preguntas nuevas; la más importante de todas en este caso era casi inmediata tras conocer la propuesta de Maxwell para la luz: si las perturbaciones eléctricas producen, básicamente, luz, ¿por qué no las vemos como tales? ¿Por qué al encender una corriente eléctrica, o apagarla, o modificarla, no vemos nada? ¿No será que la luz es otra cosa que no tiene nada que ver con la electricidad o el magnetismo? ¿No será que no hay ninguna “onda eléctrica” viajando por el espacio, si nadie las ha visto nunca, y que las ecuaciones de Maxwell no son más que pamplinas? Dicho de un modo más formal, la propuesta de Maxwell era una hipótesis, la hipótesis electromagnética de la luz; como toda hipótesis, hacía falta demostrarla. Y, como tantas otras veces, al genio teórico –en este caso Maxwell– le hacía falta una contrapartida, un genio experimental. Ese genio no fue otro que el alemán Heindrich Rudolf Hertz, que ya hizo su aparición en esta misma serie como mentor de Philipp Lenard.
Heinrich Rudolf Hertz
Heinrich Rudolf Hertz (1857-1894).
Como muchos otros, Hertz era consciente de que la luz era posiblemente sólo una parte de todas las ondas electromagnéticas; nuestros ojos eran sensibles sólo a ciertas frecuencias de oscilación, y no todas. Las “ondas eléctricas” de Maxwell, al ser generadas con variaciones de corriente eléctrica ordinarias, eran invisibles al ojo humano. Pero el problema entonces era difícil de resolver: ¿cómo demostrar que existe una onda que nadie puede ver? La solución estaba en las propias ecuaciones de Maxwell, es decir, en las relaciones entre electricidad y magnetismo. El ojo humano podía no ser sensible a muchas ondas electromagnéticas, pero debía ser posible construir algún tipo de circuito eléctrico que sí lo fuese.
Para demostrar que Maxwell tenía razón, por lo tanto, hacían falta varias cosas: era necesario producir ondas utilizando únicamente la electricidad y el magnetismo, y además detectar esas ondas de un modo reproducible en otros laboratorios. Era también necesario determinar sus propiedades, y comprobar que coincidían con las de la luz — velocidad, comportamiento ante la refracción, reflexión, etc. De modo que el objetivo de Hertz no era precisamente sencillo. El físico alemán lo logró en una serie de experimentos que marcan un antes y un después en el estudio de la electricidad y el magnetismo, a pesar de que él mismo, como veremos luego, no les dio la importancia práctica que tienen. Estos experimentos son de tal importancia que, en el propio discurso del Premio Nobel de hoy –que no fue otorgado a Hertz por las razones que hemos descrito antes– se los califica como “los más importantes en el último medio siglo”.
Es muy posible, por cierto, que leas por ahí sobre otros científicos que consiguieron transmitir ondas electromagnéticas generadas por circuitos eléctricos, algunos antes que Hertz, pero ninguno lo hizo con la claridad que el alemán, ni lo hizo de un modo sistemático que demostrase la propuesta de Maxwell, ni obtuvo tantos resultados sobre las propiedades de las “ondas eléctricas” como Hertz; como decía antes, un auténtico genio de la física experimental, tanto como Maxwell lo era de la teórica.
Hertz conocía bien, por supuesto, la teoría electromagnética. Su idea era la siguiente: producir una variación del campo electromagnético en un punto determinado, cuanto más brusca, mejor, y construir un detector lo más sensible que pudiese, de modo que si el emisor producía una perturbación electromagnética que, efectivamente, se propagase por el espacio como predecía Maxwell, el detector fuera capaz de notar su presencia. Dicho mal y pronto, la idea era pegar un buen “latigazo eléctrico” en un punto del espacio, que generase por tanto una onda electromagnética de gran amplitud a su alrededor. A su vez, esta onda debería ser capaz de meter otro “latigazo” en un lugar razonablemente alejado, y midiendo el movimiento de las cargas en el destino, debería ser posible detectar la “onda eléctrica”. No sé si suena simple, pero no lo era en absoluto; además, el experimento debía ser capaz de medir las propiedades de las ondas emitidas, como su frecuencia o amplitud, además de su velocidad, para ver si esa velocidad y esas propiedades coincidían con la de la luz.
El alemán construyó un emisor de “ondas eléctricas” que básicamente producía chispas. Para ello, unió una bobina de inducción que producía una corriente eléctrica oscilante de gran voltaje a una estructura metálica. En la estructura había dos partes, que terminaban en sendas esferitas metálicas que estaban casi en contacto pero que no se tocaban, y cada una de las dos partes estaba unida a un polo de la bobina. La idea era que, según circulaba corriente, uno de los dos lados de la estructura metálica –que hoy llamaríamos una antena– se iría cargando positivamente y el otro negativamente, hasta que la diferencia de potencial entre las dos esferitas metálicas fuera la suficiente para que saltase una chispa entre ellas (en cada lado había, además de la pequeña esfera, otra más grande que actuaba de condensador y almacenaba una buena cantidad de carga cada vez). A continuación, el sentido de la corriente procedente de la bobina cambiaba, y las dos partes de la “antena” se cargaban al revés que antes, más y más hasta que saltaba, otra vez, la chispa entre ambas bolitas, y así una y otra vez.
Réplica del experimento de Hertz.
Réplica del experimento de Hertz (Sparkmuseum, publicado con permiso del autor).
La chispa generada era audible, como cualquier chispa eléctrica, y también era posible verla, pero si Maxwell tenía razón, debía ser posible además detectar una “onda eléctrica” invisible procedente de este emisor. Para detectarla, Hertz construyó algo muy parecido: un pequeño circuito sin ningún tipo de fuente de alimentación, con dos esferitas metálicas muy cercanas la una a la otra. Si, una vez más, Maxwell tenía razón, la perturbación eléctrica generada en el emisor viajaría por el espacio en todas direcciones; al alcanzar este segundo circuito, induciría en él una corriente variable de la misma frecuencia de oscilación que la original, que por lo tanto sería capaz de producir pequeñas chispas entre las esferitas metálicas del detector: chispas eléctricas sin que hubiese ninguna fuente de electricidad en el detector.
Claro, las chispas en el detector no serían tan brutales como en el emisor; si se estaban emitiendo ondas allí, según esas ondas se expandían por el espacio se irían atenuando, con lo que al llegar al receptor serían más débiles, tanto más cuanto más lejos estuvieran el emisor y el receptor, pero deberían ser visibles en la oscuridad: para asegurarse de verlas, el científico metió el receptor en una caja cerrada, de modo que fuera posible mirar dentro de la caja sin ser deslumbrado por la chispa original y ver la “chispa secundaria”. Y, cuando Hertz puso en marcha el emisor, se observaron pequeñas chispas repetidas en el receptor. ¡En un receptor sin fuente de energía eléctrica! Hertz había empleado una corriente eléctrica variable para transmitir señales eléctricas por el espacio sin emplear cables. ¡Éste, éste es el experimento que merece no sólo un Nobel, sino un beso en los morros de Herr Hertz!
Desde luego, la cosa no se quedó ahí: estamos hablando de un científico de primera. El físico comprobó y documentó la variación en la intensidad al modificar la distancia entre emisor y receptor; puso diferentes medios entre uno y otro para comprobar si la onda atravesaba distintos materiales o no, y para medir posibles cambios de dirección al cambiar de medio. Hizo reflejarse la onda sobre una lámina metálica para generar una especie de “eco”, mediante el que era posible medir aún más propiedades de la onda generada, y comprobó la velocidad de las perturbaciones. Vamos, que diseccionó estas “ondas eléctricas” para comprobar todas las propiedades, cualitativas y numéricas, que era posible comprobar, y se pasó cuatro años haciendo experimentos al respecto, entre 1885 y 1889.
Los resultados fueron publicados en Annalen der Physik y luego en un libro, Untersuchungen Ueber Die Ausbreitung Der Elektrischen Kraft (Investigaciones sobre la propagación de la energía eléctrica): las ondas eléctricas de Maxwell se comportaban exactamente igual que la luz en todos los aspectos, se reflejaban como ella, se refractaban como ella, se propagaban a la misma velocidad que ella… las diferencias eran minúsculas y se debían a la diferencia entre las frecuencias de una y otra. Por ejemplo, al igual que la propagación de la luz era detenida por materiales como un trozo de madera, las “ondas eléctricas” de mucha menor frecuencia generadas por el aparato de Hertz eran capaces de atravesarla, y el ojo humano era sensible a unas sí y no a otras.
Los resultados de Hertz eran tan claros, los experimentos tan metódicos, las explicaciones tan meridianas y las coincidencias tan exactas que a prácticamente nadie le quedó ninguna duda: la hipótesis electromagnética de la luz de Maxwell era cierta. Se trata de uno de los experimentos más importantes de todo el siglo XIX, pero no sólo por su importancia teórica: Hertz había enviado una señal eléctrica entre dos puntos a través del aire. ¿Te das cuenta del potencial inmenso del experimento y sus aplicaciones prácticas?
Bueno, no sé si tú te das cuenta o no, pero puedo decirte que el propio Heinrich Hertz no se daba cuenta en absoluto. Era plenamente consciente, naturalmente, de la importancia teórica de sus experimentos –muy tonto hubiera tenido que ser para pasar cuatro años haciendo experimentos inútiles–, pero completamente ciego a la importancia práctica de lo que había logrado. ¿Cuáles eran las posibles ramificaciones y utilidades de lo que acababa de conseguir? En sus propias palabras:

No tiene utilidad alguna […] es sólo un experimento que demuestra que el Maestro Maxwell tenía razón – simplemente tenemos estas misteriosas ondas electromagnéticas que no podemos ver a simple vista. Pero están ahí.

En otra frase digna de un autor de ciencia-ficción clarividente, el bueno de Hertz sentenció la cuestión:

No creo que las ondas que he descubierto tengan ninguna aplicación práctica.

Afortunadamente para nosotros, otros no estaban de acuerdo con él, y en poquísimos años existían ya una infinidad de aplicaciones prácticas de las “ondas inútiles” de Hertz. De hecho, como he dicho al principio, en mi humilde opinión los dos héroes de toda esta historia son Maxwell y Hertz, y los demás simplemente limaron detalles. Era inevitable, aunque el Hertz no lo viera, aplicar estos conceptos a la práctica, y una auténtica jauría de científicos e ingenieros se lanzaron a la faena con voracidad.
Tal fue el número de personas que se dedicaron a este empeño tras la publicación de los resultados de Hertz, y especialmente de 1891 en adelante, que no está nada claro quién hizo qué primero, y depende de qué fuentes consultes te aparecen unos nombres u otros: Bose, Braun, Popov, Tesla, Branly, Marconi… tengo bastante claro que los dos galardonados con el Nobel de 1909 –Braun y Marconi– no merecen ser distinguidos de este modo dejando a los demás olvidados. Sí es cierto que los sistemas de Braun y especialmente Marconi, por unas razones u otras, tuvieron un éxito comercial que los hizo más famosos, pero no es ése no debería ser un factor determinante en la entrega de un Nobel. En fin.
Ferdinand Braun en Helgoland
Karl Ferdinand Braun (el del medio) en la estación de telegrafía sin hilos de Helgoland, el 24 de septiembre de 1900.
Braun se unió a la vorágine alrededor de 1897, y logró avances, como la adición de un diodo rectificador en el receptor, que se convirtieron en múltiples patentes. Las mejoras del alemán aumentaron el alcance práctico de las señales de radio en varios órdenes de magnitud, y permitieron conseguir que lo que en 1888 había sido una comunicación entre un emisor y un receptor separados unos metros pudiera convertirse en algo muchísimo más útil. Hacia 1900, el sistema de Braun se empleaba ya para comunicar, mediante la telegrafía sin hilos, la costa alemana con la isla de Helgoland; la distancia entre estaciones era de unos 60 km, lo cual no está nada mal teniendo en cuenta que sólo habían pasado doce años desde los experimentos de Hertz.
El otro galardonado, el italiano Guglielmo Marconi, empezó a trabajar en el asunto unos años antes que Braun, en 1894, como consecuencia indirecta de la muerte de Heinrich Hertz: el fallecimiento del alemán provocó un renovado interés en varias de sus publicaciones, y uno de los recién interesados entonces fue Marconi. El italiano, tras comprobar que en su tierra natal no recibía la atención y los fondos necesarios, se mudó a Gran Bretaña, y allí fue mejorando poco a poco los sistemas de transmisión sin hilos. A diferencia de Hertz o Maxwell, Marconi no era ningún genio –en mi opinión, por supuesto–, y su principal mérito fue, además del tesón, la adopción de multitud de pequeñas mejoras, algunas desarrolladas por otros (por ejemplo, por Braun o Tesla) para conseguir resultados prácticos brillantes.
Prototipo de Marconi
Uno de los prototipos de Marconi, 1896.
El 13 de mayo de 1897, tres años antes de que Braun lo consiguiese desde Helgoland, Marconi realizó la primera transmisión de radio sobre el mar, entre Lavernock Point y Flat Holm Island; eso sí, en ausencia todavía de las mejoras de Braun, la distancia lograda por Marconi fue sólo de unos 6 km, mucho menos impresionante que los 60 del otro. Sin embargo, Marconi obtuvo la suficiente atención y supo gestionar contactos y finanzas de modo que fue mejorando su sistema más y más, sin inventar nada revolucionario por sí mismo.
Sé que no sueno muy entusiasmado con los avances de Guglielmo, pero no puedo ocultarlo y creo que es mejor dejarte claro lo que es opinión y lo que son hechos: no me despierta demasiada simpatía. En esta serie hemos visto genios como Röntgen o los Curie, que desentrañaban los secretos del Universo por curiosidad científica y, en muchos casos, donaban al público sus descubrimientos para que todos pudieran beneficiarse de ellos. Marconi y muchos de sus compañeros de la “jauría” (que no he llamado así al azar) tenían un propósito clarísimo: obtener patentes antes que los demás, establecer empresas que reemplazasen a las de telegrafía por hilos y monopolizasen las comunicaciones a larga distancia y ganar ingentes cantidades de dinero con ello. Y todo ello, además, sin realizar avances científicos de una verdadera entidad y, en muchas ocasiones, robándose las ideas unos a otros. Tener como objetivo ganar dinero es perfectamente razonable, pero el modo en el que muchos lo hicieron no lo fue tanto.
Marconi en Terranova
Marconi y sus colaboradores elevando una antena sobre una cometa en Terranova, 1901.
En 1901, la empresa de Marconi anunció que había logrado una comunicación inalámbrica transoceánica: utilizando una antena montada sobre una cometa, habían enviado señales telegráficas entre Poldhu, en Cornualles, y Signal Hill, en Terranova. Sin embargo, sólo tenemos la palabra de Marconi y su empresa para probarlo, y muchos no se creen que realmente lo lograse entonces –y muchos tampoco se lo creían en 1901–. Además, el sistema empleado por Marconi utilizaba tantos diseños creados por otros que el mérito es muy relativo. Por otro lado, en años posteriores Marconi sí realizó comunicaciones transatlánticas comprobadas de forma regular. Claro, para realizar transmisiones a tan larga distancia, las estaciones emisoras debían ser de gran potencia, lo cual significaba que para construirlas hacían falta grandes inversiones… y nos alejamos, con todo esto, del espíritu de esta serie, de modo que permite que lo deje aquí.
De hecho, si algo recuerdas de este artículo en unos meses, que sean la perspicacia de James Clerk Maxwell en su predicción de la naturaleza electromagnética de la luz y la astucia experimental de Heinrich Hertz para demostrarlo, además de la ceguera del segundo respecto a las posibles aplicaciones prácticas de sus experimentos, y no tanto los avances posteriores, por más que fueran ésos los que obtuviesen el Nobel. Sin embargo, no puedo evitar dejar, como siempre, el discurso pronunciado por el Presidente de la Real Academia Sueca de las Ciencias, H. Hildebrand, el día 10 de diciembre de 1909:

Su Majestad, Sus Altezas Reales, damas y caballeros.
La investigación en la rama de la Física nos ha proporcionado muchas sorpresas. Descubrimientos que al principio parecían tener únicamente un interés teórico han llevado a menudo a inventos de la máxima importancia para el avance de la humanidad. Y si esto es cierto para la Física en general, lo es aún más en el caso de la investigación en el campo de la electricidad.
Los descubrimientos e invenciones a los que la Real Academia de las Ciencias ha decidido otorgar el Premio Nobel de Física de este año tienen también su origen en trabajos y estudios puramente teóricos. Sin embargo, por más importantes que éstos fueron en sus campos respectivos, nadie podría haber imaginado al principio que llevarían a las aplicaciones prácticas que surgieron más tarde.
Aunque esta noche estamos otorgando el Premio Nobel a dos de los hombres que más han contribuido al desarrollo de la telegrafía sin cables, debemos antes manifestar nuestra admiración por aquellos grandes investigadores –ya fallecidos– quienes, a través de su trabajo brillante y talentoso en los campos de la Física experimental y matemática abrieron el camino a grandes aplicaciones prácticas. Fue Faraday, con su afilada mente, quien primero sospechó una conexión íntima entre los fenómenos de la luz y la electricidad, y fue Maxwell quien tradujo sus atrevidos conceptos e ideas al lenguaje matemático y, finalmente, fue Hertz quien, a través de sus experimentos ya clásicos, mostró que las nuevas ideas sobre la naturaleza de la electricidad y la luz tenían una base real en los hechos.
Es cierto que era ya conocido antes de Hertz que un condensador cargado con electricidad puede, bajo determinadas circunstancias, descargarse de modo oscilatorio, es decir, con corrientes eléctricas que van a uno y otro lado. Sin embargo, Hertz fue el primero en demostrar que los efectos de estas corrientes se propagan por el espacio a la velocidad de la luz, produciendo así un movimiento ondulatorio con todas las características de la luz. Este descubrimiento –probablemente el más importante en el campo de la Física en el último medio siglo–. fue realizado en 1888. Constituye el fundamente, no sólo de la ciencia moderna de la Electricidad, sino también de la telegrafía sin hilos. Pero hacía falta todavía un gran salto desde las pruebas en miniatura en un laboratorio, donde las ondas eléctricas podían seguirse una pequeña distancia, hasta la transmisión de señales a través de grandes distancias. Hacía falta un hombre capaz de comprender el potencial de este empeño, y de superar todas las dificultades que se interponían en el camino de llevar la idea a la práctica. Esta gran tarea estaba reservada a Guglielmo Marconi.
Incluso teniendo en cuenta intentos anteriores en este sentido, y el hecho de que las condiciones y prerrequisitos para la realización de este empeño ya estaban establecidos, el honor de las primeras pruebas recae, en su mayor parte, en Marconi, y debemos reconocer que el primer éxito en esta empresa fue obtenido como resultado de su habilidad para convertir la idea general en un sistema práctico y útil, además de la energía inflexible con la que persiguió el objetivo que él mismo se había marcado.
El primer experimento de Marconi de transmisión de una señal a través de las ondas hertzianas se llevó a cabo en 1895. A lo largo de los 14 años que han pasado desde entonces, la telegrafía sin hilos ha progresado sin pausa, hasta alcanzar la enorme importancia que tiene hoy en día. En 1897 era aún posible únicamente realizar una transmisión inalámbrica hasta una distancia de 14-20 km. Hoy en día, las ondas electromagnéticas se envían entre el Viejo y el Nuevo Mundo, todos los barcos de vapor transoceánicos de gran tamaño tienen su propio equipo telegráfico sin hilos a bordo, y toda Armada de importancia utiliza la telegrafía sin hilos.
El desarrollo de un gran invento pocas veces se produce a manos de un solo hombre, y muchas fuerzas han contribuido a los resultados notables que se han alcanzado. El sistema original de Marconi tenía sus puntos débiles. Las oscilaciones eléctricas enviadas desde la estación emisora eran relativamente débiles, y consistían de series de ondas que se seguían unas a otras y cuya amplitud caía rápidamente en las denominadas “oscilaciones atenuadas”. El resultado era que las ondas tenían un efecto muy débil en la estación receptora, con la consecuencia de que las ondas procedentes de otras estaciones emisoras interferían fácilmente con ellas, dificultando la recepción en la estación de destino. Este insatisfactorio estado de cosas se ha superado, por encima de cualquier otra cosa, gracias al trabajo inspirado del Profesor Ferdinand Braun.
Braun realizó una modificación al diseño del circuito de emisión de ondas eléctricas, de modo que fuese posible producir ondas intensas con muy poca atenuación. Es gracias a este sistema que la denominada “telegrafía de largo alcance” ha sido posible, en la que las oscilaciones de la estación emisora, como resultado de la resonancia, pueden ejercer el máximo efecto sobre la estación receptora. Una ventaja adicional se debe al hecho de que, en general, sólo las ondas de la frecuencia utilizada por la estación emisora tienen efecto sobre la estación receptora. A través de la introducción de estas mejoras, y sólo gracias a ellas, se han obtenido los magníficos resultados recientes en la telegrafía sin hilos.
Investigadores e ingenieros trabajan incesantemente en el desarrollo de la telegrafía inalámbrica. Hasta dónde puede llegar este desarrollo, no lo sabemos. Sin embargo, con los resultados ya obtenidos, la telegrafía se ha expandido del modo más afortunado. Libres de caminos fijos e independientes del espacio, podemos ahora producir conexiones entre lugares distantes, a través de enormes masas de agua y desiertos. ¡Éste es el magnífico resultado práctico que ha florecido a partir de uno de los más brillantes descubrimientos científicos de nuestro tiempo!

En la próxima entrega de la serie, el Premio Nobel de Química de 1909.

Para saber más (esp/ing cuando es posible):

Portal de recursos para la Educación, la Ciencia y la Tecnología.

La supercomputación basada en GPUs se hace mayor » Teleobjetivo

China ha puesto en marcha el ordenador Tianhe 1-A, que con una potencia de cálculo de 2,5 petaflops no solo se convierte en el número uno del mundo, sino que demuestra que la computación basada en GPUs ya no es un pasamiento de geeks.
El Tianhe 1-A combina procesadores convencionales con GPUs, conretamente 14.336 CPUs Intel Xeon y 7.168 GPUs NVIDIA Tesla M2050, GPUs que se programan utilizando CUDA, el lenguaje creado por NVidia.

Tianhe-1A

Tianhe-1A, el superordenador mas potente del mundo

El uso de procesadores gráficos como aceleradores de cálculos matemáticos no es una idea nueva; en junio del 2008 la Universidad de Amberes puso en marcha el FASTRA, una máquina que consistía en un PC con cuatro tarjetas gráficas y que daba un rendimiento superior al del superordenador de la universidad (una máquina con 256 procesadores opteron de doble núcleo). El ordenador funcionó tan bien que en diciembre del 2009 ponían en marcha el FASTRA II, que llevaba siete tarjetas gráficas.

FASTRA-II

FASTRA-II, el «superordenador» basado en tarjetas gráficas de la Universidad de Amberes. Observar el sistema de refrigeración, simple pero efectivo

Lo cierto es que el tratamiento de gráficos no deja de ser cálculo matemático, con lo que desde las GPUs han sido procesadores matemáticos especializados, aunque NVidia siempre tuvo la certeza de que con el tiempo llegarían a ser lo bastante potentes y flexibles como para poder servir como procesadores genéricos, idea que culminó con el desarrollo de CUDA, un lenguaje de programación que permitía utilizar sus procesadores gráficos como unidades de proceso de propósito general.

NVidia Tesla C1060

NVidia Tesla C1060, una tarjeta gráfica sin salida de vídeo, destinada al mercado de la supercomputación

En estas condiciones no debe sorprendernos que NVidia haya creado la línea tesla de tarjetas gráficas sin salida de vídeo; es decir, tarjetas que montan una GPU y que están pensadas para utilizarse como coprocesadores para supercomputación. El primer supercomputador de verdad que incorporó esta tecnología fue el Tsubame, un equipo japonés que en el momento de escribir estas líneas ocupa el puesto 64 en el ranking de supercomputación.

Tsubame, el primer supercomputador basado en GPUs

Aunque, a día de hoy, los que le están sacando mas provecho a este avance son los chinos; en la última lista del top500, la de junio del 2010, China tenía dos ordenadores dentro del top ten, ambos basados en GPUs; uno es el Nebulae, basado en procesadores Intel Xeon y GPUs Nvidia Tesla C2050 y que ocupa el segundo puesto del ranking, y otro es el Tianhe-1, basado en procesadores Intel Xeon y GPUs ATI Radeon HD4870 y que ocupa el séptimo puesto del ranking.
Con la entrada en servicio del Tianhe-1A China consigue un triple hito; en primer lugar consigue fabricar el superordenador mas potente del mundo; en segundo lugar, ha conseguido colocar tres ordenadores dentro del top ten de la supercomputación (Los tres basados en GPUs); y en tercer lugar, ha demostrado que la supercomputación basada en GPUs no solo es una opción válida, sino que puede competir con los sistemas tradicionales.
¿Estamos ante un cambio de paradigma dentro del mundo de la supercomputación?

Portal de recursos para la Educación, la Ciencia y la Tecnología.

Cuántica sin fórmulas – El Teorema de Bell | El Tamiz

Cuántica sin fórmulas – El Teorema de Bell

Puedes suscribirte a El Tamiz a través del correo electrónico o añadiendo nuestra RSS a tu agregador de noticias. ¡Bienvenido!

Sin embargo, no puedo creerla seriamente, porque la teoría es inconsistente con el principio de que la Física debe representar una realidad en el espacio y el tiempo sin acción fantasmal a distancia…
Albert Einstein en una carta a Max Born, 1947.

Hace ya un año que hicieron su aparición los cuantejos en El Tamiz. Se trataba del momento en el que introducíamos en la serie Cuántica sin fórmulas el concepto de entrelazamiento cuántico, y desde entonces la serie se ha dedicado, fundamentalmente, a explorar las consecuencias prácticas y teóricas del concepto de entrelazamiento, dañando irreversiblemente las mentes que la han ido siguiendo desde entonces. Hoy continuamos con ello, de una forma aún más teórica que antes; intentaremos comprender juntos la demostración y enunciado del Teorema de Bell, cuyas consecuencias filosóficas hubieran hecho temblar a Einstein — no olvides la cita de arriba según avancemos en el artículo–. Es considerado por algunos como uno de los más revolucionarios del último siglo por lo que significa, combinado con los experimentos, acerca del Universo que nos rodea.
Pero, antes de bucear juntos en la cuántica, los avisos de rigor (si llevas mucho tiempo con nosotros, mejor saltas hasta el párrafo “En el último artículo…” para no leer lo que, con unas palabras u otras, has leído muchas veces ya):
En primer lugar, esta serie es, de lejos, la más abstracta y difícil de comprender de El Tamiz. Algunos artículos, como éste, prácticamente requieren coger un lápiz y un papel y hacer algunas anotaciones según los lees para no liarte, y a menudo es necesario leerlos varias veces para ir asimilando las cosas; en parte esto se debe a que describen conceptos complejos, y en parte a que muchas veces se trata de cosas completamente ajenas a nuestra intuición. En resumen, que hace falta cierto esfuerzo para sacar algo en claro de ellos, y gran parte del trabajo para comprender las ideas tras estos pobres artículos debe ser tuyo. Si te sirve de consuelo, imagina el esfuerzo que me supone a mí escribirlos –éste en particular, tres veces antes de quedarme sólo parcialmente satisfecho con el resultado–.
En segundo lugar, lo que vas a leer es un hatajo de simplificaciones y trampas abyectas para hacer comprensible al lego algo que es muy difícil de entender incluso para nosotros los físicos, así que si buscas rigor y explicaciones completas, mejor lo haces en otra parte. En mi opinión, como sabéis los viejos del lugar, es mucho mejor para el lego recibir una explicación conceptual asequible, aunque sea mediante analogías con sus correspondientes “agujeros”, que simplemente recibir un “esto es muy complicado, no lo entenderías” –que tiene la ventaja para nosotros de servir de escape cuando nosotros tampoco lo entendemos de verdad, con lo que no podemos explicarlo con palabras sencillas–.
Finalmente, si las palabras cuantejo zanahoriófilo, entrelazamiento o superposición te suenan raras, es que no has llegado hasta aquí con el resto de nosotros. Mi recomendación es que empieces la serie por el principio, o al menos desde que introdujimos el concepto de estado cuántico, o este artículo te va a resultar aún más raro de lo que es por sí mismo. ¿Que tienes que leer mucho antes de volver aquí? Pues sí… como he dicho antes, gran parte del esfuerzo para sacar algo en claro de esto debe ser tuyo.

En el último artículo, como espero que recuerdes, nos dedicamos a estudiar el experimento del detector de bombas de Elitzur-Vaidman. Allí nos preguntábamos acerca de dos conceptos puestos en duda por muchas predicciones de la cuántica y esenciales en la concepción clásica del Universo, y que se ponían de manifiesto en el experimento mental de esos dos físicos.
Por un lado, el realismo: la idea de que las cosas son como son y tienen unas propiedades determinadas, independientemente de que las midamos o no. Para entendernos, siempre que ante una paradoja cuántica te preguntas, “Sí, pero ¿dónde está el electrón/qué velocidad tiene/cuál es su espín/cómo son las cosas… de verdad?”, estás apelando, consciente o inconscientemente, al realismo, algo que está enterrado en nuestra intuición de una manera muy difícil de desterrar.
Por otro lado, el localismo, es decir, la idea de que los sucesos se producen en un lugar determinado y sus consecuencias viajan por el resto del Universo pasando por todos los puntos intermedios. Es más fácil comprender la idea de localismo expresándola a la Einstein, a saber: no existen “acciones fantasmales a distancia” que conecten, de forma instantánea, puntos diferentes del Universo. Lo que yo hago en un lugar no puede tener consecuencias inmediatas en otros lugares muy lejanos. Como el realismo, se ha tratado tradicionalmente de una idea implícitamente asumida por la Ciencia, aunque la cuántica en muchos casos la ponga en duda.
Sin embargo, a veces aquí hemos hablado de cómo cambiar el estado de una partícula modificaba instantáneamente el estado de una partícula entrelazada con ella. Ya dijimos entonces que esto puede interpretarse de dos maneras: si la mecánica cuántica es una teoría completa, el estado es la partícula, de modo que si cambia el estado es que ha cambiado la partícula, y el realismo no se sostiene. Por el contrario, es posible que el estado no sea toda la información sobre la partícula, en cuyo caso es posible que cambie el estado sin que cambie la partícula.
Tanto Einstein como otros científicos, a quienes llamaré real-localistas, rechazaban de plano una Física que abandonase cualquiera de esos dos conceptos. El problema era, naturalmente, que los experimentos parecían avalar la mecánica cuántica, ya que sus predicciones se cumplían extraordinariamente bien. Para los real-localistas el problema no era que el Universo fuese así de raro –en su opinión, no lo era–, sino simplemente que la propia teoría cuántica estaba incompleta, algo que podemos ver claramente con un ejemplo sencillo de los que hemos trabajado antes en la serie si lo explicamos desde el punto de vista de un real-localista.
Si yo produzco un par de cuantejillos entrelazados, de modo que si al medir el estado de uno de ellos resulta ser zanahoriófilo puedo estar seguro de que el otro es zanahoriófobo (y, antes de medir ninguno, ambos tienen un 50% de probabilidad de estar en cualquiera de los dos estados), un real-localista lo explicaría así:
Lo que sucede es que se han generado dos cuantejos con características opuestas desde el principio. Uno de ellos es zanahoriófilo, y siempre lo ha sido desde su creación, aunque yo no lo mida. El otro es zanhoriófobo desde el principio. Cuando mido uno de los dos, puesto que no sé cuál es cuál, naturalmente hay un 50% de probabilidad de que resulte ser, por ejemplo, zanahoriófobo. Pero el cuantejo no ha cambiado, lo que ha cambiado es mi conocimiento sobre él. Y el otro cuantejo no cambia instantáneamente cuando mido éste, ¡qué idea más peregrina! No, lo que pasa es que, si yo tengo el zanahoriófobo, el otro debe ser necesariamente su contrapartida, un cuantejo zanahoriófilo, como siempre fue, aunque yo no lo supiera. La zanahoriofilia y la zanahoriofobia son características reales de los cuantejos, y no se transmiten fantasmalmente a distancia.
¿Cómo es posible entonces que nunca podamos ir más allá de simples probabilidades en la cuántica? Para el real-localista, el problema es la propia cuántica. Hacía falta una teoría más completa, que tuviese en cuenta “variables ocultas” que la cuántica no consideraba — entonces, las probabilidades se desvanecerían y podríamos saber cómo son las cosas de verdad. Es como si yo tuviera una teoría acerca de que, tras un día lluvioso, hay un 60% de probabilidad de que llueva otra vez, sin tener en cuenta nada más. ¡Menuda meteorología! Si estudiase las variables que no tengo en cuenta (temperatura, velocidad del viento, humedad relativa, etc.) y estableciese modelos correctos, ese 60% se convertiría en algo muchísimo más preciso y determinado — la indeterminación no estaba en el tiempo meteorológico, sino en mi conocimiento limitado anteriormente.
John Stewart Bell y Martinus Veltman
Podría parecer que no se puede ir más allá en la discusión. ¿Cómo demostrar que la cuántica sí es una teoría completa? ¿Cómo demostrar que el realismo, o el localismo, no se cumplen en el Universo? El argumento “ah, pero la teoría cuántica no es completa” es difícil de rebatir con experimentos de ningún tipo… porque nunca es posible estar seguro de cuándo una teoría científica es completa. Aquí es cuando entra en escena el físico norirlandés John Stewart Bell (a la derecha de pie frente a la pizarra), que consigue con una elegancia fuera de lo común lo que parecía imposible: predecir resultados experimentales que deben cumplirse, sí o sí, para un Universo real-localista, sin la menor hipótesis acerca de la mecánica cuántica.
Antes de zambullirnos en la demostración del Teorema en cuestión, quiero tratar de hacerte ver la enorme originalidad de enfoque de Bell: otros habían intentado antes demostrar, a partir de las propiedades de la mecánica cuántica, resultados experimentales determinados. Pero eso no resolvía el problema: sí, la mecánica cuántica predecía esos resultados, pero tal vez habría otra teoría más completa que no sólo predijese los mismos resultados en esos experimentos, sino que además tuviera en cuenta variables ocultas o cosas que se hubiesen escapado a la cuántica, y lo explicase todo sin romper el localismo ni el realismo. Un callejón sin salida para discutir sobre esos dos aspectos.
Pero Bell hace exactamente lo contrario. Partamos de la hipótesis de que la realidad existe y es local, dice Bell, ¡justo el mismo punto de partida que el de Einstein y los real-localistas! ¿Qué consecuencias experimentales tiene eso? Naturalmente, muchas, pero John Bell consigue razonar meticulosamente sobre una en concreto: existe un límite en un determinado resultado experimental que no puede sobrepasarse si la realidad es local. Cualquier experimento que esté dentro de esos límites es compatible con una realidad local y no demuestra nada… pero si un solo experimento se sale de esos límites, no es posible explicarlo con absolutamente ninguna teoría real-localista. Fíjate que Bell no sostiene que la cuántica sea verdad, sino que su Teorema se centra en el localismo y el realismo, y consigue romper el nudo gordiano como debe hacerlo la Ciencia, estableciendo condiciones que pueden comprobarse de manera empírica. Después volveremos a hacer énfasis en esto.
De modo que ponte el gorro de pensar, audaz y estimado lector, y razonemos juntos de un modo similar a como lo hizo Bell en 1964 en su “On the Einstein Podolsky Rosen Paradox” –a la que enlazaremos al final para los valientes– en la que establece su famoso Teorema. Naturalmente, Bell era una persona respetable y seria, y nunca jamás hubiera utilizado cuantejos, apio ni zanahorias en su razonamiento… peor para él, que se quede con sus aburridos electrones, fotones, espín y estados de polarización. Nuestro argumento es conceptualmente equivalente al suyo, pero con todas las salvedades que puedas imaginar: si ves agujeros en este razonamiento, los agujeros están en mis pobres analogías, no en el impecable artículo de Bell.
Como verás, el razonamiento completo es bastante lógico y, francamente, no hay sorpresas ni momentos extraños… lo extraño no es la conclusión del razonamiento, como veremos al finalizar, sino otra cosa diferente.
¡Vamos con ello!
En nuestro razonamiento, partiremos de dos hipótesis que harían feliz a Einstein –y muchas veces, para qué vamos a engañarnos, al resto de nosotros–, y olvidemos por un momento la maldita mecánica cuántica y sus conceptos incomprensibles:

  1. Las propiedades de un sistema físico existen independientemente de cualquier medición — existe una realidad “de verdad”.
  2. Los cambios en un sistema físico no pueden propagarse instantáneamente a otros lugares del Universo — esa realidad es “local”.

Imaginemos pues que tenemos una máquina que produce cuantejos. Los cuantejos producidos pueden ser de tres tipos: zanahoriófilos, apiófilos y manzanófilos, según adoren una de esas tres comidas (zanahoria, apio o manzana). Un cuantejo tiene gusto por uno de los tres alimentos y sólo uno, de modo que si es zanahoriófilo es necesariamente apiófobo y manzanófobo, y del mismo modo con las otras viandas. Naturalmente, nunca podemos estar seguros de a cuál de los tres tipos pertenece la adorable criatura hasta que le presentamos algún alimento, e incluso entonces es posible que no sepamos cuál es: si le presentamos una zanahoria y la rechaza, por ejemplo, no sabremos si es apiófilo o manzanófilo, simplemente habremos descartado el hecho de que pueda ser zanahoriófilo.
Eso sí, dado que la realidad existe, los cuantejos son de un tipo determinado desde que nacen, nada de esa palabrería cuántica de que “está en un estado superpuesto de zanahoriófilo, apiófilo y manzanófilo hasta que colapsamos la función de onda al medirla”. Nada cambia el tipo de cuantejo una vez éste ha nacido como es. En este artículo, para entendernos gráficamente, representaremos por tanto a los cuantejos con uno de estos tres dibujos, dependiendo de a qué grupo pertenezca en cada caso:
Cuantejos zanahoriófilo, apiófilo y manzanófilo
Cuantejos zanahoriófilo, apiófilo y manzanófilo.
(Todas las ilustraciones de este artículo, por cierto, son obra de Geli, afortunadamente para vosotros).
Nuestra máquina tiene otra peculiaridad: produce los cuantejos como pares de gemelos idénticos. Ambos son zanahoriófilos, ambos apiófilos o ambos manzanófilos. Esto significa que si yo estoy en un lugar y tú en otro, y yo enseño a mi cuantejillo una manzana y se la zampa feliz y contento, puedo estar seguro de que el tuyo también es manzanófilo, no porque haya habido una conexión instantánea entre ellos ni nada parecido, sino porque simplemente he comprobado que mi cuantejo siempre fue manzanófilo, luego el tuyo también lo ha sido siempre. ¡En esta casa se respeta el localismo!
Además, esta máquina produce los pares completamente al azar: un tercio de las veces produce cuantejos zanahoriófilos, un tercio apiófilos y un tercio manzanófilos. Cómo hace esto es indiferente, y no requiere en absoluto de probabilidades cuánticas; podemos tener dentro un operario con un dado de seis caras que lo lance cada vez y produzca el par de cuantejos correspondiente: 1-2 significa zanahoriófilos, 3-4 apiófilos y 5-6 manzanófobos. O podemos tener un ordenador que genere al azar el tipo de cuantejos, da exactamente lo mismo mientras desde fuera no podamos saber de qué tipo se han producido y los tres casos sean equiprobables.
Máquina productora de cuantejos
Máquina productora de pares de cuantejos.
Finalmente, supongamos que tú y yo tenemos sendos detectores de cuantejos a una gran distancia entre ellos, simplemente para eliminar cualquier posible interacción que no pudiéramos detectar. Estos detectores son máquinas muy simples: a elección de quien las maneja, pueden presentar al cuantejo que llega una zanahoria, un apio o una manzana. Si el cuantejo se lanza, ávido y feliz, a por la comida, se enciende una luz verde en la máquina. Si el cuantejo pone cara de asco y rechaza, despectivo, el alimento, se enciende una luz roja. Nuestras máquinas tienen una palanca con la que podemos seleccionar cuál de los tres alimentos habrá esperando al cuantejo cuando llegue. Por ejemplo, en este caso la luz se pondrá verde, pues estamos ofreciendo apio a un cuantejo apiófilo (aunque no sabemos que lo es hasta entonces, claro):
Máquina detectora de cuantejos
Máquina detectora de tipos de cuantejos.
Supongamos que tú y yo ponemos las palancas de nuestros detectores en la misma posición, da igual cuál, y que la máquina que produce cuantejos nos lanza un millón de pares aleatorios de las adorables criaturas. ¿Qué probabilidad habrá de que las luces de nuestras dos máquinas coincidan cada vez?
Naturalmente, la probabilidad es del 100%. Si los cuantejos son, por ejemplo, zanahoriófilos, y ambos ponemos la palanca en “zanahoria”, tanto tu máquina como la mía encenderán la luz verde. Si ponemos la palanca en “apio” o “manzana”, tanto tu luz como la mía serán rojas. Si la máquina produce un millón de cuantejos al azar y nuestros detectores tienen la palanca en la misma posición el uno que el otro, el millón de veces coincidirán nuestras luces: a veces serán verdes cuando acertemos, otras serán rojas, pero siempre del mismo color la tuya que la mía. Y, aunque no sea demasiado importante para nuestro experimento, nuestras luces serán verdes 1/3 de las veces (cuando acertemos con la comida), y rojas los 2/3 restantes (cuando no acertemos con la comida).
Espero que, hasta aquí, todo esté claro. Ahora, compliquemos la cosa un poquito, que te toca pensar a ti.
Imagina que tanto tú como yo nos agenciamos un dado, y hacemos lo mismo que el operario de la máquina productora de cuantejos. Para cada cuantejo que vaya a llegar a mi detector, si me sale 1-2, pondré la palanca en posición “zanahoria”, si es 3-4 en “apio” y si es 5-6 en “manzana”. La probabilidad de que acierte con la comida, desde luego, sigue siendo de 1/3 para cada cuantejo, y si me llegan 9 millones de cuantejos, se encenderá la luz verde unos tres millones de veces. Pero ésa no es la cuestión, sino hacernos la misma pregunta de antes: ¿cuántas veces de los nueve millones coincidirán nuestras luces?
Podría decírtelo directamente, pero creo que la comprensión es mucho mejor si haces la cuenta tú mismo. Si tú seleccionas cada vez una palanca al azar, y yo hago lo mismo, y recibimos nueve millones de pares de cuantejos aleatorios, ¿cuántas veces coincidirán nuestras luces? Seguramente te hará falta un lápiz y un papel para hacer alguna pequeña tabla en la que mostrar las posibles combinaciones de “posición de palanca” en tu máquina y la mía. Antes de seguir leyendo, piensa sobre ello.
·
·
·
·
·
·
·
·
·
·
·
·
Básicamente, existen nueve posibles combinaciones de posiciones de palanca entre tú y yo, todas igualmente probables: tú zanahoria-yo zanahoria, tú zanahoria-yo apio, etc. Puedes verlas todas en la siguiente tabla:
Tabla de combinaciones de palanca
Supongamos que recibimos un par de cuantejos zanahoriófilos (lo que hemos representado en la tabla, para no olvidarlo al rellenarla, en la esquina superior izquierda). ¿En cuántas de las nueve posibles combinaciones coinciden nuestras luces? Si ambos ponemos las palancas igual, naturalmente obtenemos los dos el mismo resultado. Pero hay veces en las cuáles también obtenemos el mismo resultado de luz roja incluso aunque no tengamos las palancas igual: puesto que al cuantejillo le gustan las zanahorias, si tú tienes la palanca en “apio” y yo en “manzana”, tanto tu luz como la mía serán rojas. Si antes de ver la tabla no sabías por dónde empezar, piensa en cuáles de los nueve casos coinciden nuestras luces, y luego sigue leyendo. Puedo parecer pesado, pero no es lo mismo verlo hecho que haberlo trabajado tú mismo.
·
·
·
·
·
·
·
·
·
·
·
·
Aquí tienes la tabla rellena para un par de cuantejos zanahoriófilos, con las casillas en las que coincidimos resaltadas con “tic” verde:
Tabla de combinaciones de palanca 2
Pero ¿qué sucedería con las probabilidades para un par de cuantejos apiófilos, o manzanófilos? Pues exactamente lo mismo: siempre hay tres de las nueve opciones en las que coincidimos seguro (cuando hacemos lo mismo con la palanca el uno que el otro), y otras dos en las que también coincidimos aunque las palancas no estén igual (cuando no acertamos ninguno pero con alimentos diferentes). El resultado es, por tanto, siempre el mismo. Si cuentas las casillas en las que coincidimos en la tabla de arriba, verás el número mágico: cinco de cada nueve veces (5/9 de las veces) coincidirán nuestras luces.
Sería posible, naturalmente, que nuestro operario hiciese trampa o tuviese un dado defectuoso, de modo que no lanzase pares cuantejos con 1/3 de probabilidad cada uno, sino que unos tipos fueran más probables que otros… pero eso no modificaría en absoluto el 5/9. También sería posible que el operario, en vez de producir cuantejos zanahoriófilos, apiófilos o manzanófilos produjese cuantejos “aberrantes”: por ejemplo, cuantejos que siempre se comen cualquier alimento que se les pone delante, o que nunca comen ninguno. Pero, si hiciese eso, entonces coincidiríamos siempre: por ejemplo, si los cuantejos aceptan cualquier comida, tanto tu luz como la mía serán verdes siempre, y lo mismo si los cuantejos rechazan cualquier comida.
El operario podría incluso hacer que los cuantejos fueran aún más complejos: podría lanzar cuantejos zanahorio-apiófilos, que aceptasen esas dos verduras pero no las manzanas, o manzano-zanahoriófilos, o cualquier combinación que en vez de aceptar una y rechazar dos viandas, aceptase dos y rechazase una. Pero eso tampoco podría hacer jamás que coincidiésemos menos de 5/9 de las veces. De hecho, si tú y yo nos mantenemos firmes en nuestra aleatoriedad al poner la palanca en nuestros detectores, y el operario lanza pares de cuantejos idénticos que son de los tipos normales o los aberrantes, todos mezclados, podemos estar seguros de una cosa, la conclusión final de nuestro teorema absolutamente lógico y razonable:
Nuestras luces coincidirán, al menos, 5/9 de las veces.
Fíjate que digo “al menos” para protegernos de la posibilidad de cuantejos aberrantes. Puede que sean 5/9, o un poquito más, pero seguro, segurísimo, que no van a ser menos, ya que cualquier desviación de la aleatoriedad del operario sólo puede mantener o aumentar la proporción de coincidencia entre nosotros — si lo hacemos suficientes veces, claro; es posible que lo hiciéramos nueve veces y salieran dos coincidencias y siete desacuerdos, pero sobre nueve millones de veces, seguro que se aproxima mucho a 5/9. Y en todo esto no hemos hablado en absoluto de cuántica, pero hemos establecido un límite claro que es imposible atravesar. Ésa es la maravilla y la genialidad de John Stewart Bell: que obtuvo una desigualdad inquebrantable y relativamente sencilla de comprobar experimentalmente. Y esa desigualdad es el resultado de un razonamiento que, espero, te habrá parecido lógico, sensato e inevitable.
Sin embargo, la conclusión de arriba es una mentira como un piano de cola.
Porque, una vez tenemos una afirmación como ésa, no hay más que preparar experimentos de este tipo y comprobar cuántas veces coinciden nuestras luces. Desgraciadamente, nuestra tecnología aún no ha logrado producir cuantejillos zanahoriófilos, con lo que los experimentos para comprobar que se cumple la desigualdad de Bell (que coincidimos 5/9 o más de las veces) se han realizado con miríadas de pares de partículas entrelazadas, como electrones y fotones, y se emplean propiedades como el espín o el estado de polarización. Mucho más prosaico, pero igualmente válido. Y, cuando se hace el experimento análogo al que hemos hecho nosotros arriba con cuantejos, ¿sabes cuántas veces coinciden nuestras luces?
La mitad.
En otras palabras, 4,5/9 de las veces, no 5/9. Puede parecer que los números se parecen mucho, y que el 50% y el 55,555…% son tan similares que la diferencia puede ser simplemente un error, y que la desigualdad de Bell no se cumple por la falta de precisión. Pero, si sabes de probabilidad, eres consciente de que, para un número enorme de pruebas –y en muchos experimentos diferentes, no sólo en uno– un 5% de diferencia es una enormidad. Dicho de otro modo, la conclusión empírica, escribiéndola como hemos hecho arriba es que
Nuestras luces pueden coincidir menos de 5/9 de las veces.
Y eso es imposible.
O, mejor dicho: es imposible si nuestro razonamiento anterior era válido. Puesto que ese 4,5/9 se ha comprobado experimentalmente, nuestro razonamiento anterior no puede ser válido. Ahora bien, un razonamiento puede no ser válido porque hay un error en el proceso seguido, o porque alguna de las premisas de que partía era falsa. Puesto que nuestro razonamiento es sólido, la conclusión es impepinable: al menos una de nuestras premisas es falsa.
Dicho de otro modo: o bien no existe una realidad objetiva, o bien la realidad no es local, o ninguna de las dos cosas. Y esto no tiene absolutamente nada que ver con la mecánica cuántica, pues es aplicable independientemente de cuánto avance la cuántica y cuántas cosas tenga en cuenta. Si las partículas tienen propiedades intrínsecas que no son establecidas al medirlas sino inherentes a las cosas, y no existe manera de que esas propiedades cambien instantáneamente cuando suceden cosas en otro lugar, no es posible que nuestras luces coincidan la mitad de las veces… pero sí lo hacen.
De modo que el Teorema de Bell establece un límite experimental que ninguna teoría real-localista puede rebasar. Ese límite se rebasa experimentalmente, luego ninguna teoría real-localista puede explicar esos experimentos. Eso es, básicamente, el avance revolucionario que estableció el bueno de John. De haber estado vivo, Einstein indudablemente hubiera sufrido al ver los resultados experimentales que desmontaban las hipótesis del teorema.
Por si cabe duda, el teorema en sí no dice que las premisas sean falsas, sino que si son verdaderas, la desigualdad debe cumplirse. Podríamos enunciarlo, en los términos de este artículo, así:
Si existe una realidad local, nuestras luces coincidirán al menos 5/9 de las veces.
Los experimentos violan esa desigualdad, de modo que nuestra conclusión puede ser entonces que no hay una realidad local, pero el teorema es independiente de los resultados de los experimentos, simplemente establece el marco teórico que deben o no cumplir para satisfacer las premisas o no. Siento ser repetitivo, pero no quiero confusiones respecto a qué es el Teorema de Bell y qué son los intentos empíricos de extraer conclusiones a partir de él, ya que mi intención en este artículo es precisamente que tengas una idea aproximada del razonamiento y el enunciado del Teorema.
Hay otra cosa que tampoco dice el Teorema de Bell, aunque a veces se oiga por ahí. No dice que si se incumple la desigualdad “la cuántica tiene razón”. Es perfectamente posible que haya una teoría más completa, mejor, más precisa que la cuántica, y que la mecánica cuántica que tenemos resulte patética e hilarante para nuestros nietos: pero, lo que quiera que sea que la reemplace, no puede ser una teoría real-localista. En otras palabras: la cuántica es rara, y tal vez esté equivocada, pero no es rara por estar equivocada; cualquier teoría que la reemplace también sera rara, porque el Universo lo es.
Tampoco es posible concluir que el Universo no es real ni tampoco local: recuerda que hemos demostrado que al menos una de las dos premisas es falsa, no que ambas son falsas. Es perfectamente compatible con esta combinación de razonamiento y experimentos un Universo real en el que hay transferencia instantánea de propiedades físicas. También lo es un Universo sin esa transferencia instantánea, pero en el que la realidad se define al medirla. Desde luego, también es posible que ni una cosa ni la otra existan; con lo que quiero que te quedes es con que tal vez las cosas sean raras por un lado, raras por otro o raras por todos los lados, pero raras son.
Eso sí, aunque esto no demuestre nada y sea ajeno al Teorema en sí, la cuántica se comporta de manera ejemplar en estos experimentos. Porque, si se aplica el formalismo cuántico a los experimentos que hemos descrito arriba, la cuántica predice una coincidencia que viola la desigualdad, es decir, una coincidencia menor de 5/9. Y no sólo eso: la probabilidad de coincidencia de acuerdo con la cuántica es exactamente 4,5/9… justo lo que hemos obtenido en los experimentos. No voy a justificar ese resultado aquí, porque los experimentos involucran polarizaciones con ángulos de 45 y 90º, y el 1/2 resulta del coseno de 45º al cuadrado, y es un follón, y no quiero que te quedes con la idea de que la cuántica explica nada: ¡la cuestión no es ésa!
No faltan quienes cuestionan la conclusión a la que hemos llegado; por lo que sé, muy pocos lo hacen atacando el Teorema de Bell –aunque los hay–, cuya conclusión es muy generalmente aceptada. Lo que los proponentes del real-localismo sostienen es que los experimentos con los que obtenemos ese 4,5/9 no son válidos, sino que tienen errores de precisión o de concepto que podrían explicar la diferencia con la predicción de 5/9. Sin embargo, es mucho más numeroso el grupo que opina que tanto la teoría como la práctica son bastante sólidas, y que debemos abandonar la idea de un Universo de realidad local, al menos por uno de los dos lados; por ejemplo, la mayor parte de los defensores de la idea de que la cuántica no tiene aún en cuenta todas las variables (es decir, hay “variables ocultas”) piensan que las variables ocultas explican que nos parezca que no hay una realidad objetiva… pero sí aceptan, en su inmensa mayoría, que eso significa necesariamente que debe haber transmisión instantánea de algunas de estas variables entre sistemas físicos.
Y, sin más, mi salud mental perjudicada irreversiblemente por la elaboración de este artículo, lo mismo que, seguramente, la tuya por leerlo, me retiro a la mazmorra de nuevo. Pero no sin preguntarte, lunático lector de este ladrillo: aunque no tengas manera de demostrar tu afirmación, ¿por qué opción te inclinas tú? ¿real pero no local, local pero no real, o ninguna de las dos cosas? ¿o tal vez estás en el equipo de Einstein y crees que existe una realidad local, y que seguimos fallando en algo?

Para saber más:

Puedes suscribirte a El Tamiz a través del correo electrónico o añadiendo nuestra RSS a tu agregador de noticias. ¡Bienvenido!

Portal de recursos para la Educación, la Ciencia y la Tecnología.

Quién inventó el Teléfono

http://smt-service.info/efe_video/player/efe_iframe.php?w=400&h=440&backgroundColor=ffffff&mainColor=3366ff&secondColor=999999&lsig=c5013f923d5l&us=demedicina

<a href=»‘http://anuncios.blogsfarm.com/servidor/www/delivery/ck.php?n=»a389a34b&cb=»INSERT_RANDOM_NUMBER_HERE'» target=»‘_blank'»><img src=»‘http://anuncios.blogsfarm.com/servidor/www/delivery/avw.php?zoneid=»569&cb=»INSERT_RANDOM_NUMBER_HERE&n=»a389a34b'» border=»‘0′» alt=»»» /></a>
Aunque puede parecer una pregunta sencilla, la respuesta es de todo menos simple. En el último cuarto del siglo XIX, en plena Era Victoriana, los avances tecnológicos, impulsados por la Revolución Industrial, se desarrollaban con una rapidez impresionante en las principales potencias del mundo.
Una prueba de esta era dorada tecnológica fue la historia de uno de los descubrimientos más importantes del siglo. Pero, ¿quién inventó el teléfono?

Breve explicación del problema en español (AsturiasVerde)

En la evolución de la técnica suele suceder que un descubrimiento acarree otros. Esto es lo que ocurrió con el telégrafo Morse, cuyas señales cortas y largas no eran las únicas que podían ser enviadas por hilo.
Se tenía conocimiento de las ondas sonoras, y se trataba, por lo tanto, de encontrar un aparato que pudiera transformar los sonidos en electricidad a fin de que pudiera ser retransmitida incluso la voz humana.
Un profesor alemán, Johann Philipp Reis, resolvió el problema en la forma siguiente: hizo un agujero en la tapa de un tonel y extendió encima la piel de un embutido, que formaba así una especie de membrana que las ondas sonoras de la voz humana hacían vibrar.
Adhiriendo sobre esta piel una pequeña lámina de platino conectada a un resorte metálico conductor de la corriente, las oscilaciones de la membrana actuaban sobre la corriente eléctrica y permitían la propagación del sonido a través del hilo. El receptor estaba formado por una aguja conectada a una bobina.
Reis fue calurosamente felicitado por su descubrimiento, que mostró con ocasión de un congreso de investigación de ciencias naturales. Pero cuando murió, trece años más tarde su aparato todavía no había alcanzado la perfección requerida. Nunca había podido transmitir otra cosa más que sonidos aislados, menos aún la voz humana, rica en tonos altos.

imageEl aparato de Reis

El ingeniero Antonio Giuseppe Meucci, nacido en Florencia (Italia) y emigrante a los Estados Unidos, es el personaje histórico que el país norteamericano señala actualmente como el verdadero inventor del teléfono. El talentoso florentino ideó en torno al año 1854 un aparato que permitía comunicar la habitación de su mujer con el taller donde trabajaba.
Meucci acababa de inventar el teléfono y con bastantes años de antelación respecto a Alexander Graham Bells, como se encargó de evidenciar públicamente en 1860, cuando consiguió reproducir la voz de una cantante a lo largo de un notable trecho, suceso del que se haría eco la prensa italiana de Nueva York.
Alexander Graham Bells fue considerado por muchos años, y actualmente algunos lo siguen considerando, como el inventor del teléfono. Un ejemplar del teléfono primitivo de Reis había llegado a Edimburgo, donde estudiaba Bells. El escocés, trasladado a América, siguió interesándose por esta idea, y aunque carecía de conocimientos de electrónica tenía la convicción de que la voz podía transmitirse por medio de una corriente continua en forma de oscilaciones. La convicción y la viveza para apropiarse de los inventos del momento.
image

El teléfono de Bells

Quizá “inspirándose” en los descubrimientos como el de Meucci y otros similares, Bells consiguió por fin dar con la fórmula en 1875. Pero además, tuvo la suerte de tener el dinero suficiente para patentarla, cosa que Meucci no pudo hacer.
Bells no sólo le ganó a Meucci, sino también a otro inventor estadounidense, Elisha Gray. El 14 de febrero de 1876, Gray se presentó en la Oficina de Patentes con un nuevo aparato, el teléfono, que transmitía la voz humana a través del hilo telegráfico, pero lo hizo dos horas después que Alexander G. Bells hiciera lo propio con otro aparato muy parecido; Gray reclamó entonces la paternidad del invento, aunque tras varios años de litigio Graham Bells fue ratificado como su legítimo inventor.

image La patente original del teléfono de Bells

Reis no había comprendido que eran las oscilaciones de la corriente (variaciones de potencia) las que propagaban el sonido a través de hilos; creía que la corriente tenía interrupciones totales. Con el descubrimiento de Bells se consideró como fecha oficial el nacimiento del teléfono el 14 de febrero de 1876, cuando el escocés solicitó su patente. Sin embargo, olvidó registrarla en Suecia y en Alemania, países en los cuales Ericsson y Werner von Siemens construyeron sus propios aparatos.
Ante la pregunta de quién inventó el teléfono, la respuesta es amplia. Reis, Meucci, Bells, y Gray son los nombres que más se relacionan con el invento, sin embargo, pueden haber existido otros, incluso anteriores, que nunca conoceremos. En definitiva, lo importante para el avance de la ciencia es el invento, el descubrimiento es una anécdota.
Fuentes: Library of the Congress / Enciclopedia Focus, La Técnica y la Materia, Editorial Argos, Barcelona / Asturias Verde

Portal de recursos para la Educación, la Ciencia y la Tecnología.

Televisores

Hola amigos y lectores de nuestro blog, queremos darles la bienvenida en este 2010 y esperamos que nos puedan seguir leyendo y aportando en el mundo de la información y la tecnología.

Para iniciar este año queremos hacer un recuento de lo que más nos ha impactado del evento del CES 2010, realizado en las Vegas del 7 al 10 de enero.
Hago la salvedad que haremos una reseña de lo que más nos impactó relacionado con las tecnologías y la información y uno que otro a nivel personal de los 2700 expositores que se presentaron

Televisores

Dentro de las principales tendencias, que se vio mucho, aprovechando también el gran éxito de la película Avatar de James Cameron estuvieron los televisores 3D por diferentes compañías. A esto se le suma la posibilidad que ahora incluyen estos equipos, no sólo para ver televisión, también cuentan con Internet como el Toshiba Kira Cell TV con 1TB de disco duro, Wi-fi, blueray, soporte para 3D, entre otros
El producto ganador de este CES 2010 por parte de cnet el Panasonic VT25, el cual incluye gafas para su visualización en 3D

Por supuesto no nos dejó de impactar el WiTricity + WHDI por Haier. Lo más sorprendente de este televisor es que funciona completamente sin cables, incluso la energía es inalámbrica, un nuevo concepto que espero tenga bastante éxito y no podemos dejar de seguir el rastro a esta tecnología potenciada y desarrollada por WiTricity


Tablets

Otra de las nuevas tendencias y mostrado bastante por diferentes compañías es la explosión de los tablets, estos pequeños computadores sin teclado, ni mouse. Microsoft mostró el trabajo que está desarrollando con HP y su HP Slate con Windwos 7 haciendo frente a las especulaciones sobre la nueva tablet que se espera lanzará Apple hoy

Otra de las nuevas presentaciones fue Lenovo y su híbrido IdeaPad U1. Lo más llamativo de este equipo de 11,6” es que su pantalla se puede desprender del cuerpo y quedar como tablet, aunque estarían corriendo plataformas distintas: cuando está como netbook correría Windows 7, mientras que cuando se le separa la pantalla estaría con un Linux e interface desarrollada por Lenovo.
Computadores

Algunas tendencias que vimos fue todo en uno, como el caso del MSI computador y proyector todo en uno.


Otro que sin duda nos llamó la atención fue el LBO Light Touch, el cual hablan que podría ser la tendencia, ya que todo lo proyecta, tanto su pantalla como teclado. Muy al estilo película.
Juzguen ustedes mismos.


Celulares
Proyectores

Estos pequeños proyectores de mano ya sean independientes o dentro de un celular también tuvieron su espacio.
Samsung presentó su Mobile Projector 9600
LG su GW820 eXpo
Logic Wireless con su Logic Bolt 1.5 teléfono que viene con Symbian y sustanciales mejoras con respecto al presentado en el Ces 2009

Nexus One
Uno que también aprovechó para mostrar su nuevo teléfono fue Google, quien se lanza como proveedor, Su Nexus One, potente máquina impulsada por procesadores Qualcomm y su Snapdragon de 1Gz corriendo el nuevo sistema operativo Android 2.1.


Libros electrónicos

Sin duda los libros electrónicos también llamaron el interés, después de todo el esfuerzo que están haciendo compañías para popularizarlos. En este segmento se apuntan los nuevos lectores que quieren hacerle compañía y competencia al Kindle de Amazon. Entre ellos se encuentran:


En el mundo de los libros electrónicos también se le suman:

Otros

Otros lanzamientos que nos causaron curiosidad y también se relacionan con el mundo de la información fueron:

Despertador con Internet
Este producto desarrollado por Sony, el cual lleva por nombre «Dash» cuenta con una pantalla de 7″ y varias posibilidades como redes sociales, videos, correo, entre otras.
Miren a ver si les gustaría tener uno en sus nocheros.


inPulse

Con una pantalla OLED de 1,3″ este accesorio para dispositivos Black Berry permite conectarse al celular por medio de Bluetooth y leer los mensajes tan pronto como lleguen.


Portal de recursos para la Educación, la Ciencia y la Tecnología.

Imágenes – STS-129 | El Tamiz

Imágenes – STS-129 | El Tamiz

Aquí os dejo las dos imágenes que más me han impresionado de la misión STS-129 –que ya está volviendo a casa– a la Estación Espacial Internacional. Son las dos, sin duda, dignas de convertirse en fondos de pantalla espectaculares. En este caso no tengo mucho que decir aparte de: qué belleza…

La versión pequeña no hace honor a la primera fotografía; es mejor que la veas a tamaño completo. Es una de ésas que combina la maravilla natural con la tecnológica:


Versiones a 1024×768, 1600×1200, 4288×2929 px.

En la segunda se ve al Sol escondiéndose tras la delgada atmósfera terrestre. Minimalista, serena y simplemente perfecta:


Versiones a 1024×768, 1600×1200, 4288×2929 px.

Si no las habías visto ya, espero que las hayas disfrutado. Todas las imágenes originales son, por supuesto, de la NASA.

Portal de recursos para la Educación, la Ciencia y la Tecnología.